您的位置首页生活快答

仪器设备较复杂,价格较昂贵。

仪器设备较复杂,价格较昂贵。

的有关信息介绍如下:

仪器设备较复杂,价格较昂贵。

分析方法

发射光谱法:依据物质被激发发光而形成的光谱来分析其化学成分。使用不同的激发源而有不同名称的光谱法。如用高频电感耦合等离子体(ICP)作激发源,称高频电感耦合等离子体发射光谱法;如用激光作光源,称激光探针显微分析。

原子吸收光谱法:基于待测元素的特征光谱,被蒸气中待测元素的气态原子所吸收,而测量谱线强度减弱

程度(吸收度)求出样品中待测元素含量。应用较广的有火焰原子吸收法和非火焰原子吸收法,后者的灵敏度较前者高4~5个数量级。

原子荧光分光光度法:通过测量待测元素的原子蒸气在辐射能激发下所产生的荧光发射强度来测定待测元素.

红外吸收光谱法:主要用于鉴定有机化合物的组成,确定化学基因及定量分析,近年来已用于无机化合物。

紫外可见分光光度法:适用于低含量组分测定,还可以进行多组分混合物的分析。利用催化反应可大大提高该法的灵敏度。

荧光分光光度法:对某些元素具有较高的灵敏度和选择性。

红外傅里叶变换光谱法:光信号以干涉图形式输入计算机进行傅里叶变换的数学处理,具有信噪比大、灵敏度高等特点。

核磁共振波谱法:利用有机分子的质子共振鉴定有机化合物和多组分混合物的组分以及无机成分的分子结构分析。

电子自旋共振法:以磁场对离子、分子或原子所含未成对电子的作用所引起的磁能级分裂为基础的分析方法.

曼光谱法:可测定分子结构,使用可调激光器的曼光谱仪用于微量分析,也可用于无机物和单晶的结构分析。

射线荧光光谱法:具有谱线简单,基体影响小,选择性高,测定范围宽等优点.可对原子序数大于9的所有元素作无损分析。电子探针微区分析可分析原子序数大于4的所有元素,应用于微粒矿物岩石分析,金属材料中元素的分布,各种物相中元素的分配。

发射光谱法

电子能谱法:是测定电子结合能的一种方法,它是研究表面化学的有力工具,并可用于除H和He以外任何元素的定性分析。

俄歇电子能谱法:应用于分析无机及有机试样的组成,价态及结构,一般为无损分析。放射化学分析,有中子活化法、光子活化法、带电粒子活化分析法等。

穆斯堡尔谱法:所探测的对象是单个的原子核,可用于研究材料中的杂质原子和空位对材料性能的影响。质谱分析,具有高鉴别及检测能力,可以分析所有元素.火花源质谱适于测定痕量元素。离子探针微区分析,微区直径约1~5□m,深度约几十埃,可进行扫描分析,几乎可分析所有的元素。

极谱法:是利用阴极(或阳极)极化变化过程作为依据的一种方法。其特点是灵敏度高、试液用量少,可测定浓度极小的物质。

离子选择性电极法:是一种使用电位法来测量溶液中某一离子活度的指示电极,能快速、连续、无损地对溶液中的某些离子活度进行选择性地检测。

库仑分析法,其中有控制电位库仑分析法和恒电流库仑滴定法.

色谱法:是一种分离分析法,利用混合物中各组分在不同的两相中溶解、解析、吸附、脱附或其他亲和作用性能的差异,而互相分离。按流动相的物态,可分为气相色谱法和液相色谱法,按固定相使用形式,可分为柱色谱法、纸色谱法和薄层色谱法。

重要意义

仪器分析自20世纪30年代后期问世以来,不断丰富分析化学的内涵并使分析化学发生了一系列根本性的变化。随着科技的发展和社会的进步,分析化学将面临更深刻、更广泛和更激烈的变革。现代分析仪器的更新换代和仪器分析新方法、新技术的不断创新与应用,是这些变革的重要内容。因此,仪器分析在高等院校分析化学课程中所处的地位日趋重要。许多地方高校为了使自己培养的人才能从容迎接和面对新世纪科学技术的挑战,已将仪器分析列为化学等专业学生必修的专业基础课.故编写适应地方高校有关专业使用的仪器分析教材是教材改革的重要内容之一。

2001年,全国新世纪地方高等院校专业系列教材编委会聘请许金生教授主编这本《仪器分析》,并同意由全国7所院校中9名长期从事仪器分析教学和科研的教师参加编写。

旨在以教材改革的形式实施教育部颁发的《基础教育课程改革(试行)》方案,并着眼于地方高等院校的层次特色和分类属性,提供一部内容新颖,适应地方高校本科人才培养要求,便于教学的仪器分析教材。

对基本理论的阐述尽量做到深入浅出,言简意明;在内容的安排上避免繁复的数学推导,侧重分析方法的理论依据和实际应用;在描述手法上,采用图文并茂的方式,介绍仪器的基本结构、性能、使用方法及注意事项,并适当简介仪器分析的动态和进展。

仪器分析就是利用能直接或间接地表征物质的各种特性(如物理的、化学的、生理性质等)的实验现象,通过探头或传感器、放大器、分析转化器等转变成人可直接感受的已认识的关于物质成分、含量、分布或结构等信息的分析方法。也就是说,仪器分析是利用各种学科的基本原理,采用电学、光学、精密仪器制造、真空、计算机等先进技术探知物质化学特性的分析方法。因此仪器分析是体现学科交叉、科学与技术高度结合的一个综合性极强的科技分支。 仪器分析的发展极为迅速,应用前景极为广阔.

ICP—AES测定磷矿石中主量、痕量成分样品处理

测定磷矿石中主量、痕量成分

称取0。l000g于l05℃烘2h的矿样于铂金坩埚中,加入氢氟酸10 mL和高氯 1 mL.,在低温电热板上加热分解至白烟冒尽,再加入高氯酸2ml,继续加热冒烟至近干,取下稍冷,加入盐酸(1+1)5ml和适量的水,加热溶解可溶性盐类,冷却至室温后移入100ml量瓶定容,转至聚乙烯瓶中,供ICP-AFS测定。

注意事项:磷矿石样品前处理方法可分为碱熔融与酸分解法两类,碱熔法因加入碱类试剂对ICP—AE5测定碱金属有一定影响,酸溶法通常采用盐酸和硝酸的混合酸,部分磷矿石不能被混合酸分解完全。实验表明,用混酸溶解样品,测定铝、钛、铁、镁的分析结果偏低,而对于酸溶法.以氢氟酸-高氯酸即可完全溶解样品,满足分析要求。磷矿石中主、痕量元素含量相差很大,待测元素间存在着验。实验表明主体元素干扰很小。可采用基体匹配法消除基体影响.利用离峰校正扣除主体元素的连续背景干扰。