如图,已知$Rt\triangle ABC$中,$\angle ACB=90^{\circ}$,$CD\bot AB$于点$D$,$\angle BAC$的平分线分别交$BC$,$CD$于点$E$、$F$.
的有关信息介绍如下:$\left(1\right)\because CD\bot AB$,$\therefore \angle CDB=90^{\circ}$,$\therefore \angle B+\angle BCD=90^{\circ}$,$\because \angle ACB=90^{\circ}$,$\therefore \angle ACD+\angle BCD=90^{\circ}$,$\therefore \angle ACD=\angle B$,$\because AE$平分$\angle BAC$,$\therefore \angle CAE=\angle BAE$,$\therefore \angle ACD+\angle CAE=\angle B+\angle BAE$,即$\angle CFE=\angle CEF$,$\therefore CF=CE$,即$\triangle CEF$是等腰三角形;$(2)AB=2AC$,理由是:$\because E$在线段$AB$的垂直平分线上,$\therefore AE=BE$,$\therefore \angle B=\angle BAE$,$\because \angle CAE=\angle BAE$,$\angle ACB=90^{\circ}$,$\therefore 3\angle B=90^{\circ}$,$\therefore \angle B=30^{\circ}$,$\therefore AB=2AC$;$(3)$方法一、过$E$作$EM\bot AB$于$M$,$\because AC=2.5$,$\angle ACB=90^{\circ}$,$\angle B=\angle CAE=30^{\circ}$,$\therefore AE=2CE$,设$CE=2$,则$AE=2x$,由勾股定理得:$AC^{2}+CE^{2}=AE^{2}$,即$2.5^{2}+x^{2}=\left(2x\right)^{2}$,解得:$x=\frac{5\sqrt{3}}{6}$,即$CE=\frac{5\sqrt{3}}{6}$,$\because AE$平分$\angle CAB$,$\angle ACB=90^{\circ}$,$EM\bot AB$,$\therefore EM=CE=\frac{5\sqrt{3}}{6}$,$\therefore \triangle ABE$的面积$S=\frac{1}{2}×AB×EM=\frac{1}{2}×5\times \frac{5\sqrt{3}}{6}=\frac{25\sqrt{3}}{12}$;方法二、由勾股定理得:$BC=2.5\sqrt{3}$,$\because CE=\frac{5\sqrt{3}}{6}$,$\therefore BE=BC-CE=\frac{5\sqrt{3}}{3}$,$\therefore \triangle ABE$的面积$S=\frac{1}{2}×BE×AC=\frac{1}{2}\times \frac{5\sqrt{3}}{3}\times 2.5=\frac{25\sqrt{3}}{12}$.
$\left(1\right)\because CD\bot AB$,$\therefore \angle CDB=90^{\circ}$,$\therefore \angle B+\angle BCD=90^{\circ}$,$\because \angle ACB=90^{\circ}$,$\therefore \angle ACD+\angle BCD=90^{\circ}$,$\therefore \angle ACD=\angle B$,$\because AE$平分$\angle BAC$,$\therefore \angle CAE=\angle BAE$,$\therefore \angle ACD+\angle CAE=\angle B+\angle BAE$,即$\angle CFE=\angle CEF$,$\therefore CF=CE$,即$\triangle CEF$是等腰三角形;$(2)AB=2AC$,理由是:$\because E$在线段$AB$的垂直平分线上,$\therefore AE=BE$,$\therefore \angle B=\angle BAE$,$\because \angle CAE=\angle BAE$,$\angle ACB=90^{\circ}$,$\therefore 3\angle B=90^{\circ}$,$\therefore \angle B=30^{\circ}$,$\therefore AB=2AC$;$(3)$方法一、过$E$作$EM\bot AB$于$M$,$\because AC=2.5$,$\angle ACB=90^{\circ}$,$\angle B=\angle CAE=30^{\circ}$,$\therefore AE=2CE$,设$CE=2$,则$AE=2x$,由勾股定理得:$AC^{2}+CE^{2}=AE^{2}$,即$2.5^{2}+x^{2}=\left(2x\right)^{2}$,解得:$x=\frac{5\sqrt{3}}{6}$,即$CE=\frac{5\sqrt{3}}{6}$,$\because AE$平分$\angle CAB$,$\angle ACB=90^{\circ}$,$EM\bot AB$,$\therefore EM=CE=\frac{5\sqrt{3}}{6}$,$\therefore \triangle ABE$的面积$S=\frac{1}{2}×AB×EM=\frac{1}{2}×5\times \frac{5\sqrt{3}}{6}=\frac{25\sqrt{3}}{12}$;方法二、由勾股定理得:$BC=2.5\sqrt{3}$,$\because CE=\frac{5\sqrt{3}}{6}$,$\therefore BE=BC-CE=\frac{5\sqrt{3}}{3}$,$\therefore \triangle ABE$的面积$S=\frac{1}{2}×BE×AC=\frac{1}{2}\times \frac{5\sqrt{3}}{3}\times 2.5=\frac{25\sqrt{3}}{12}$.